
1

Program Analysis Too Loopy?

Set the Loops Aside

Eric Larson

September 25, 2011

Seattle University

Loops are Important!

 Virtually every program has loops.

2

3

Path Based Analysis

 Many bug detection / testing

techniques involve traversing

different paths within a unit

(often a function).

 Symbolic execution

 Test generation

 A key issue: Loops introduce

a large, possibly infinite,

number of paths.

A

B C

D

G

E F

How to Handle Loops?

 Restrict the number of iterations in the loop
to some small subset.
 May miss bugs that only surface on a

particular number of iterations.

 Restrict the analysis time: stop analysis
after n paths or x seconds.
 The traversal order of paths is important to

make sure all regions of the code are
exercised.

 Compute loop post-conditions.

 Detect and handle loops that meet
particular pattern(s).

4

Interprocedural Summaries

 PREfix* uses symbolic execution to find

common C/C++ coding mistakes.

 For function calls:

 The called function is analyzed first.

 A model or summary is created that captures

the functionality of the called function.

 The model replaces the function call

eliminating the need for interprocedural path

analysis.

 Can a similar approach be used for loops?

5
*Bush, Pincus, and Sielaff. A static analyzer for finding dynamic programming

errors. Software – Practice and Experience. 2000.

Research Study Explores …

 Explores:

 The number of paths in each loop.

 The number of paths if loops are analyzed
separately.

 An analysis of how often loops contained
certain constructs or properties.

 Analyzed 15 different C programs
containing 1,091 loops.

 Implemented using an extension to
GrammaTech’s CodeSurfer.

6

Number of Paths in Each Loop

7

Program
Most Paths in

Loop

Number of Paths

1 2-10 11-100 101-1000 1001 -10k > 10k

bc 119 54 43 5 1 0 0

betaftpd 37 5 10 2 0 0 0

diff3 581 29 17 4 3 0 0

find 396 20 24 3 3 0 0

flex 464 70 74 6 3 0 0

ft 4 12 11 0 0 0 0

ghttpd 23 11 9 2 0 0 0

gzip 198 87 82 11 1 0 0

indent 30,352,140 58 37 9 2 1 2

ks 36 19 14 2 0 0 0

othello 121 18 7 0 1 0 0

space 164 23 24 4 1 0 0

sudoku 10,368 19 31 7 1 0 1

thttpd 5,768 30 44 5 4 2 0

yacr2 392 46 65 8 4 0 0

TOTAL 30,352,140
501 492 68 24 3 3

45.9% 45.1% 6.2% 2.2% 0.3% 0.3%

Analyzing Loops Separately

8

Program
Paths (loops traversed

at most once)

Paths (loops analyzed separately)

Total
Outside

Loops

Inside

Loops

bc 949,346 56,965 56,487 478

betaftpd 45,692 42,315 42,209 106

diff3 572,718 40,966 39,735 1,231

find 1,966,770 1,804,370 1,803,439 931

flex 7.40E+11 7.22E+11 7.22E+11 1,398

ft 10,594 526 481 45

ghttpd 9,679 1,156 1,075 81

gzip 3.05E+10 2.37E+09 2.37E+09 873

indent 9.82E+17 8.38E+11 8.38E+11 30,421,708

ks 24,452 153 47 106

othello 13,382 13,201 13,034 167

space 6,227 2,011 1,676 335

sudoku 1.94E+09 21,216 10,099 11,117

thttpd 2.84E+12 3.48E+10 3.48E+10 10,345

yacr2 2,249,048 3,104 1,575 1,529

Loop Characteristics

 Loop breakdown:

 Array traversals 48.7%

 Data structure traversals 14.8%

 Sentinel loops 4.5%

 Input sentinel loops 2.7%

 Other 29.3%

 Hard to analyze constructs:

 24.2% of loops contained an alternate exit
(beyond the normal stopping condition).

 57.6% of loops contained a function call.

9

Conclusion

 Most loops have very few paths.

 Separating loops from complex functions
does not reduce complexity.

 Most complex functions have complexity
both inside and outside loops.

 Future Work:

 Analyze loops in different languages such
as C++ or Java.

 Implement symbolic execution where loops
are analyzed separately.

10

Questions?

11

