A Constraint Programming Approach to Conflictaware Optimal Scheduling of Prioritized Code Clone Refactoring

Minhaz Fahim Zibran PhD Student

Chanchal K. Roy Assistant Professor


```
PrintWriter writer = null;
try {
    writer = new PrintWriter(new FileWriter(file));
    writer.write(...);
    //.... more statements .....
    writer.close();
} catch (IOException e) {
    e.printStackTrace();
}
```


- order dependency [Lee et al. 2010]
- mutual exclusion [Liu et al. 2008]
- mutual inclusion [Yoshida et al. 2005]

Mathematical Model

 $\mathcal{Y}_r = \begin{cases} 0 & \text{if } r \in \mathcal{R} \text{ is not chosen} \\ k & \text{if } r \in \mathcal{R} \text{ is chosen as the } k^{th} \text{ activity} \end{cases}$ $\mathcal{X}_r = \begin{cases} 0 & \text{if } r \in \mathcal{R} \text{ is not chosen} \\ 1 & \text{if } r \in \mathcal{R} \text{ is chosen} \end{cases}$ $\mathcal{Z}_{ij} = \begin{cases} 0 & \text{if } r_i \perp r_j \\ 1 & \text{if } r_i \nleftrightarrow r_j \\ +2 & \text{if } r_j \nrightarrow r_i \text{ and } r_i \leftrightarrow r_j \\ -2 & \text{if } r_i \nrightarrow r_j \text{ and } r_i \leftrightarrow r_j \\ +3 & \text{if } r_j \nrightarrow r_i, \text{ but neither } r_i \leftrightarrow r_j \text{ nor } r_i \nleftrightarrow r_j \\ -3 & \text{if } r_i \nrightarrow r_j, \text{ but neither } r_i \leftrightarrow r_j \text{ nor } r_i \nleftrightarrow r_j \end{cases}$ maximize $\sum \mathcal{X}_r \rho_r (\overline{Q}_r - E(g_r))$ (1) $r \in \mathcal{R}$ Subject to, $\mathcal{X}_r + \mathcal{Y}_r \neq 1, \qquad \forall r \in \mathcal{R}$ (2) $\mathcal{X}_{r_i} + \mathcal{X}_{r_j} = 2 \Rightarrow \mathcal{Y}_{r_i} \neq \mathcal{Y}_{r_j}, \quad \forall r_i, r_j \in \mathcal{R}$ (3) $\mathcal{Z}_{ij} - \mathcal{Z}_{ji} > 0 \Rightarrow \mathcal{Y}_{r_i} < \mathcal{Y}_{r_j}, \quad \forall r_i, r_j \in \mathcal{R}$ (4) $\mathcal{Z}_{ij} - \mathcal{Z}_{ji} < 0 \Rightarrow \mathcal{Y}_{r_i} > \mathcal{Y}_{r_j}, \quad \forall r_i, r_j \in \mathcal{R}$ (5) $|\mathcal{Z}_{ij}| = 1 \Rightarrow \mathcal{X}_{r_i} + \mathcal{X}_{r_j} \le 1, \quad \forall r_i, r_j \in \mathcal{R}$ (6) $|\mathcal{Z}_{ij}| = 2 \Rightarrow (\mathcal{X}_{r_i} + \mathcal{X}_{r_j}) \ modulo \ 2 = 0, \quad \forall \ r_i, r_j \in \mathcal{R} \ (7)$ $\sum \mathcal{X}_r \leq \mathcal{M}$ (8) $r \in \mathcal{R}$

Minhaz Zibran, University of Saskatchewan

Mathematical Model

Mathematical Model

Minhaz Zibran, University of Saskatchewan

Implementation

- Constraint Programming
- OPL Implementation
- IBM ILOG CPLEX Optimization Studio 12.2

Effort Estimation

- Refactoring Effort Model
 - Understanding the Context
 - method delegation
 - inheritance hierarchy
 - Code Modification Effort
 - token modification
 - code relocation
 - Navigation Effort
 - Dispersion of source files

Effect Estimation

Attribute		Formula
Reusability	=	$-0.25 \times \text{DCC} + 0.25 \times \text{CAM} + 0.5 \times \text{CIS}$
		$+0.5 \times \text{DSC}$
Flexibility	=	$0.25 \times \text{DAM} - 0.25 \times \text{DCC} + 0.5 \times \text{MOA}$
		$+0.5 \times \text{NOP}$
Understandability	=	$-0.33 \times ANA + 0.33 \times DAM - 0.33 \times DCC$
		$+0.33 \times \text{CAM} - 0.33 \times \text{NOP} - 0.33 \times \text{NOM}$
		$-0.33 \times \text{DSC}$
Functionality	=	$0.12 \times \text{CAM} + 0.22 \times \text{NOP} + 0.22 \times \text{CIS}$
		$+0.22 \times \text{DSC} + 0.22 \times \text{NOH}$
Extendability	=	$0.5 \times \text{ANA} - 0.5 \times \text{DCC} + 0.5 \times \text{MFA}$
		$+0.5 \times \text{NOP}$
Effectiveness	=	$0.2 \times ANA + 0.2 \times DAM + 0.2 \times MOA$
		$+0.2 \times MFA + 0.2 \times NOP$

Design Property	Metric	Description
Design size	DSC	Design size in classes
Complexity	NOM	Number of methods
Coupling	DCC	Direct class coupling
Polymorphism	NOP	Number of polymorphic methods
Hierarchies	NOH	Number of hierarchies
Cohesion	CAM	Cohesion among methods in class
Abstraction	ANA	Average number of ancestors
Encapsulation	DAM	Data access metric
Composition	MOA	Measure of aggregation
Inheritance	MFA	Measure of functional abstraction
Messaging	CIS	Class interface size

Empirical Evaluation

Subject Systems	Clone Groups	Clone Fragments	Total Refactorings	
Mutation Framework	21	62	72	
LIME	20	55	67	
gCad	28	91	93	
VisCad	57	136	166	

- Validation with manual approach
- Comparison with variants of greedy approach

Results

Results

Subject	Scheduling Values at dimensions Refac.				
systems	approaches	Prior.	Effort	Quality	chosen
	Greedy ^p	20.06	21.94	18.53	40
Mutation	Greedy ^e	9.63	6.06	10.04	20
Frame-	Greedy ^q	18.16	21.82	19.64	42
WORK	СР	9.34	7.86	11.48	20
	Greedy ^p	22.42	21.12	19.93	47
LIME	Greedy ^e	13.00	8.28	13.61	33
	Greedy ^q	16.29	23.49	26.07	51
	СР	11.04	12.32	16.12	33
gCad	Greedy ^p	19.65	21.62	20.00	41
	Greedy ^e	9.61	9.53	11.57	28
	Greedy ^q	12.05	23.48	25.98	44
	СР	6.69	15.19	17.99	28
VisCad	Greedy ^p	36.14	32.57	25.71	66
	Greedy ^e	16.12	18.63	13.20	40
	Greedy ^q	29.02	33.81	34.32	72
	СР	15.33	15.78	21.90	40
Here,	Greedy ^p = approach greedy towards priority satisfaction				
	Greedy ^e = approach greedy towards effort minimization				
Greedy ^{q} = approach greedy towards quality gain					

Comparison of CP and greedy scheduling approaches

Related Work

Refactoring scheduler	Scheduling approach	Refactoring effort	Quality gain	Sequential dependency	Mutual exclusion	Mutual inclusion	Priorities satisfaction
Bouktif et. al. [5]	GA						
Lee et. al. [20]	OmeGA						
Liu et. al. [19]	Heuristic						
Our Scheduler	СР	\checkmark			\checkmark	\checkmark	\checkmark

- [5] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A Novel Approach to Optimize Clone Refactoring Activity. In *GECCO*, July 8 –12, 2006.
- [19] H. Liu, G. Li, Z. Ma, and W. Shao. Conflict-aware schedule of software refactorings. *IET Softw.*, 2(5): 446–460, 2008.
- [20] S. Lee, G. Bae, H. S. Chae, and D. Bae, and Yong Rae Kwon. Automated scheduling for clone-based refactoring using a competent GA. *Softw. Pract. Exper.*, Wiley Online Library, 2010.

Contributions

- Novel Effort Model
- Novel Approach (CP)
- Wide Range of Constraints
- Captures Risks