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Motivation

Using symbolic execution for proving program termination
(and other liveness properties)
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closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

@ there are already a few ad-hoc approaches: AProVE, Costa, Julia
(Haskell, Prolog, Java bytecode)

@ we aim at presenting a higher-level, language independent scheme
using well-known notions and techniques from partial evaluation
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Symbolic execution

@ Extension of standard execution for unkown input data

(symbolic values)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3 /10



closed symbolic execution for verifying program termination

Symbolic execution

@ Extension of standard execution for unkown input data

(symbolic values)

@ Usually an underapproximation of standard execution
e requires subsumption and abstraction for efficiency

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3/ 10



closed symbolic execution for verifying program termination

Symbolic execution

@ Extension of standard execution for unkown input data

(symbolic values)

@ Usually an underapproximation of standard execution
e requires subsumption and abstraction for efficiency

@ Mainly used for testing and debugging in imperative languages
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closed symbolic execution for verifying program termination

Symbolic execution: example

b: x:=input();

L : while x > 0 do
b : x:=x—-1;
I : done
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Symbolic execution: example

b: x:=input();

L : while x > 0 do
b : x:=x—-1;
I : done
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\
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closed symbolic execution

Symbolic execution: example

for verifying program termination

b: x:=input();

L : while x > 0 do
b : x:=x—-1;
I : done

(o, {x— L})
v
</15{X¢H1}>
K, {x+— X}, —(X >0
R U Y R el
v
(h, {x — 0})

v (b fx = X — 1}, ~(X > 1))
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(Io, {x — L}, true) \

\

(h, {x — X}, true)
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v

(h,{x— X —1},X >0)

(b, {x+— X —1}, X > 1)
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closed symbolic execution for verifying program termination

Partial evaluation

@ Extension of standard execution for some unkown input data
(symbolic values)

@ Usually an overapproximation of standard execution
e requires subsumption and abstraction for termination

@ Mainly used for program specialization in declarative (functional,
logic, etc) languages
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closed symbolic execution for verifying program termination

Partial evaluation: example

power x0 = 1
power x 1 = x
power x n = x % power x (n—1)
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Partial evaluation: example

power x0 = 1
power x 1 = x
power x n = x % power x (n—1)

power x (n+ 2)

l

x % power x (n+1)

X % X X * x % power x (m+ 1)
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closed symbolic execution for verifying program termination

Partial evaluation: example

power x0 = 1
power x 1 = x
power x n = x % power x (n—1)

power x (n+ 2)

l

x % power x (n+1)

X % X X * x % power x (m+ 1)
power , X N = Xk power ; X n
= power ; x0 = x=x*x
power ; X n = Xx%Xxpower ; x (n—1)
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This work

@ Use symbolic execution to overapproximate standard executions

(as in partial evaluation)
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closed symbolic execution for verifying program termination

This work

@ Use symbolic execution to overapproximate standard executions
(as in partial evaluation)

@ Use the symbolic execution graph for verifying program termination
(or other liveness properties)

In particular,

@ we produce a term rewriting system that represents the transitions of
the symbolic execution graph (as in partial evaluation)

@ and apply existing termination provers for term rewriting systems
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closed symbolic execution for verifying program termination

Example

o x:=input();

L : while x > 0 do
b X:=x—1;
I : done
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Example

o x:=input();

L : while x > 0 do
b X:=x—1;
I : done

K (o, {x — L}, true) \

(hh, {x — X}, true)

—

(B, {x — X}, ~(X > 0)) (b, {x — X}, X > 0)

(hy {x — X\L— 1}, X >o>\

K By {x—X—-1},-(X >1)) (b, {x—X—-1},X>1)
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Example

o x:=input();

L : while x > 0 do
b X:=x—1;
I : done

K (o, {x — L}, true) \
fo -

¢/ = fl X
(h, {x — X}, true) fl X = if (X > 0)
/ v then f3 x
(b x s X1, ~(X > 0)) (b, {x — X}, X > 0) = else 4 x

\L f4 X = f5 (X — 1)
(Il,{x»—rX—l},X>0)\ fs x = if (x>0)
K _— v /J then f3 x

(B, {x+— X =1}, (X > 1)) (h,{x— X —1},X > 1) else f; x
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closed symbolic execution

Example

X :=in

done

for verifying program termination

put();

while x > 0 do
X =x-—1;

-~

o

(o, {x — L}, true)

N (e

¢/ = fl X
(h, {x — X}, true) fl X = if (X > 0)
/ v then f3 x
(b x s X1, ~(X > 0)) (b, {x — X}, X > 0) = else 4 x

(b, {x = X =1}, X

/

(B, {x — X =1}, =(X > 1)) (h,{x— X -1}, X >1)

\
\

\ f4X = f5(X—].)
> 0) fs x = if (x>0)

else f4 x

/J then f3 x

G Vidal (Valencia)

Terminating! (using AProVE)
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closed symbolic execution for verifying program termination

Proof-of-concept implementation

SETT (Symbolic Execution-based Termination Tool)

@ simple imperative programs with integers, basic arithmetic,
assignments, conditionals and jumps

web interface: http://kaz.dsic.upv.es/sett/
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closed symbolic execution for verifying program termination

Conclusions

@ Powerful scheme for proving program termination

@ Same scheme can be used

o for other (dynamic) programming languages (Erlang, JavaScript)
o for other (liveness) properties
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