Closed Symbolic Execution
for Verifying Program Termination

German Vidal

Technical University of Valencia

12th IEEE Int’l Working Conf. on Source Code Analysis and Manipulation
SCAM 2012

Sep 23-24, 2012
Riva del Garda, Italy

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012

1/

10



closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 2 /10



closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

@ there are already a few ad-hoc approaches: AProVE, Costa, Julia

(Haskell, Prolog, Java bytecode)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 2 /10



closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

@ there are already a few ad-hoc approaches: AProVE, Costa, Julia
(Haskell, Prolog, Java bytecode)

@ we aim at presenting a higher-level, language independent scheme
using well-known notions and techniques from partial evaluation

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 2 /10



closed symbolic execution for verifying program termination

Symbolic execution

@ Extension of standard execution for unkown input data

(symbolic values)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3 /10



closed symbolic execution for verifying program termination

Symbolic execution

@ Extension of standard execution for unkown input data

(symbolic values)

@ Usually an underapproximation of standard execution
e requires subsumption and abstraction for efficiency

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3/ 10



closed symbolic execution for verifying program termination

Symbolic execution

@ Extension of standard execution for unkown input data

(symbolic values)

@ Usually an underapproximation of standard execution
e requires subsumption and abstraction for efficiency

@ Mainly used for testing and debugging in imperative languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3/ 10



closed symbolic execution for verifying program termination

Symbolic execution: example

b: x:=input();

L : while x > 0 do
b : x:=x—-1;
I : done

G Vidal (Valencia) Closed Symbolic Execution

SCAM 2012

4 /10



closed symbolic execution for verifying program termination

Symbolic execution: example

b: x:=input();

L : while x > 0 do
b : x:=x—-1;
I : done

(o, {x — L})
\

(h{x —1})
\

(b {x—1})
\

(h, {x—0})
\

<l37 {X = 0}>

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 4 /10



closed symbolic execution

Symbolic execution: example

for verifying program termination

b: x:=input();

L : while x > 0 do
b : x:=x—-1;
I : done

(o, {x— L})
v
</15{X¢H1}>
K, {x+— X}, —(X >0
R U Y R el
v
(h, {x — 0})

v (b fx = X — 1}, ~(X > 1))

(5, {x+—0}) \

/ ‘L

/ ¢

(Io, {x — L}, true) \

\

(h, {x — X}, true)
</2,{X = X},X > 0)
v

(h,{x— X —1},X >0)

(b, {x+— X —1}, X > 1)

I,

G Vidal (Valencia) Closed Symbolic Execution

SCAM 2012 4/ 10



closed symbolic execution for verifying program termination

Partial evaluation

@ Extension of standard execution for some unkown input data
(symbolic values)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 5/ 10



closed symbolic execution for verifying program termination

Partial evaluation

@ Extension of standard execution for some unkown input data
(symbolic values)

@ Usually an overapproximation of standard execution
e requires subsumption and abstraction for termination

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 5/ 10



closed symbolic execution for verifying program termination

Partial evaluation

@ Extension of standard execution for some unkown input data
(symbolic values)

@ Usually an overapproximation of standard execution
e requires subsumption and abstraction for termination

@ Mainly used for program specialization in declarative (functional,
logic, etc) languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 5/ 10



closed symbolic execution for verifying program termination

Partial evaluation: example

power x0 = 1
power x 1 = x
power x n = x % power x (n—1)

G Vidal (Valencia) Closed Symbolic Execution

SCAM 2012

6 /




closed symbolic execution for verifying program termination

Partial evaluation: example

power x0 = 1
power x 1 = x
power x n = x % power x (n—1)

power x (n+ 2)

l

x % power x (n+1)

X % X X * x % power x (m+ 1)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 6 /10



closed symbolic execution for verifying program termination

Partial evaluation: example

power x0 = 1
power x 1 = x
power x n = x % power x (n—1)

power x (n+ 2)

l

x % power x (n+1)

X % X X * x % power x (m+ 1)
power , X N = Xk power ; X n
= power ; x0 = x=x*x
power ; X n = Xx%Xxpower ; x (n—1)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 6 /10



closed symbolic execution for verifying program termination

This work

@ Use symbolic execution to overapproximate standard executions

(as in partial evaluation)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 7 /10



closed symbolic execution for verifying program termination

This work

@ Use symbolic execution to overapproximate standard executions
(as in partial evaluation)
@ Use the symbolic execution graph for verifying program termination

(or other liveness properties)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 7 /10



closed symbolic execution for verifying program termination

This work

@ Use symbolic execution to overapproximate standard executions
(as in partial evaluation)

@ Use the symbolic execution graph for verifying program termination
(or other liveness properties)

In particular,

@ we produce a term rewriting system that represents the transitions of
the symbolic execution graph (as in partial evaluation)

@ and apply existing termination provers for term rewriting systems

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 7 /10



closed symbolic execution for verifying program termination

Example

o x:=input();

L : while x > 0 do
b X:=x—1;
I : done

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 /10



closed symbolic execution for verifying program termination

Example

o x:=input();

L : while x > 0 do
b X:=x—1;
I : done

K (o, {x — L}, true) \

(hh, {x — X}, true)

—

(B, {x — X}, ~(X > 0)) (b, {x — X}, X > 0)

(hy {x — X\L— 1}, X >o>\

K By {x—X—-1},-(X >1)) (b, {x—X—-1},X>1)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 /10



closed symbolic execution for verifying program termination

Example

o x:=input();

L : while x > 0 do
b X:=x—1;
I : done

K (o, {x — L}, true) \
fo -

¢/ = fl X
(h, {x — X}, true) fl X = if (X > 0)
/ v then f3 x
(b x s X1, ~(X > 0)) (b, {x — X}, X > 0) = else 4 x

\L f4 X = f5 (X — 1)
(Il,{x»—rX—l},X>0)\ fs x = if (x>0)
K _— v /J then f3 x

(B, {x+— X =1}, (X > 1)) (h,{x— X —1},X > 1) else f; x

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 /10



closed symbolic execution

Example

X :=in

done

for verifying program termination

put();

while x > 0 do
X =x-—1;

-~

o

(o, {x — L}, true)

N (e

¢/ = fl X
(h, {x — X}, true) fl X = if (X > 0)
/ v then f3 x
(b x s X1, ~(X > 0)) (b, {x — X}, X > 0) = else 4 x

(b, {x = X =1}, X

/

(B, {x — X =1}, =(X > 1)) (h,{x— X -1}, X >1)

\
\

\ f4X = f5(X—].)
> 0) fs x = if (x>0)

else f4 x

/J then f3 x

G Vidal (Valencia)

Terminating! (using AProVE)

Closed Symbolic Execution SCAM 2012 8 /10



closed symbolic execution for verifying program termination

Proof-of-concept implementation

SETT (Symbolic Execution-based Termination Tool)

@ simple imperative programs with integers, basic arithmetic,
assignments, conditionals and jumps

web interface: http://kaz.dsic.upv.es/sett/

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 9 /10


http://kaz.dsic.upv.es/sett/

closed symbolic execution for verifying program termination

Conclusions

@ Powerful scheme for proving program termination

@ Same scheme can be used

o for other (dynamic) programming languages (Erlang, JavaScript)
o for other (liveness) properties

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 10 / 10



	closed symbolic execution
	for verifying program termination


