
Closed Symbolic Execution
for Verifying Program Termination

Germán Vidal

Technical University of Valencia

12th IEEE Int’l Working Conf. on Source Code Analysis and Manipulation
SCAM 2012

Sep 23-24, 2012
Riva del Garda, Italy

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 1 / 10



closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

there are already a few ad-hoc approaches: AProVE, Costa, Julia

(Haskell, Prolog, Java bytecode)

we aim at presenting a higher-level, language independent scheme

using well-known notions and techniques from partial evaluation

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 2 / 10



closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

there are already a few ad-hoc approaches: AProVE, Costa, Julia

(Haskell, Prolog, Java bytecode)

we aim at presenting a higher-level, language independent scheme

using well-known notions and techniques from partial evaluation

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 2 / 10



closed symbolic execution for verifying program termination

Motivation

Using symbolic execution for proving program termination
(and other liveness properties)

there are already a few ad-hoc approaches: AProVE, Costa, Julia

(Haskell, Prolog, Java bytecode)

we aim at presenting a higher-level, language independent scheme

using well-known notions and techniques from partial evaluation

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 2 / 10



closed symbolic execution for verifying program termination

Symbolic execution

Extension of standard execution for unkown input data

(symbolic values)

Usually an underapproximation of standard execution

requires subsumption and abstraction for efficiency

Mainly used for testing and debugging in imperative languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3 / 10



closed symbolic execution for verifying program termination

Symbolic execution

Extension of standard execution for unkown input data

(symbolic values)

Usually an underapproximation of standard execution

requires subsumption and abstraction for efficiency

Mainly used for testing and debugging in imperative languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3 / 10



closed symbolic execution for verifying program termination

Symbolic execution

Extension of standard execution for unkown input data

(symbolic values)

Usually an underapproximation of standard execution

requires subsumption and abstraction for efficiency

Mainly used for testing and debugging in imperative languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 3 / 10



closed symbolic execution for verifying program termination

Symbolic execution: example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done

'

&

$

%

〈l0, {x 7→ ⊥}〉
��

〈l1, {x 7→ 1}〉
��

〈l2, {x 7→ 1}〉
��

〈l1, {x 7→ 0}〉
��

〈l3, {x 7→ 0}〉

⇒

'

&

$

%

〈l0, {x 7→ ⊥}, true〉
��

〈l1, {x 7→ X}, true〉
rrffffffffff

��
〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

rrffffffffff
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉
��. . .

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 4 / 10



closed symbolic execution for verifying program termination

Symbolic execution: example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done

'

&

$

%

〈l0, {x 7→ ⊥}〉
��

〈l1, {x 7→ 1}〉
��

〈l2, {x 7→ 1}〉
��

〈l1, {x 7→ 0}〉
��

〈l3, {x 7→ 0}〉

⇒

'

&

$

%

〈l0, {x 7→ ⊥}, true〉
��

〈l1, {x 7→ X}, true〉
rrffffffffff

��
〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

rrffffffffff
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉
��. . .

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 4 / 10



closed symbolic execution for verifying program termination

Symbolic execution: example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done

'

&

$

%

〈l0, {x 7→ ⊥}〉
��

〈l1, {x 7→ 1}〉
��

〈l2, {x 7→ 1}〉
��

〈l1, {x 7→ 0}〉
��

〈l3, {x 7→ 0}〉

⇒

'

&

$

%

〈l0, {x 7→ ⊥}, true〉
��

〈l1, {x 7→ X}, true〉
rrffffffffff

��
〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

rrffffffffff
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉
��. . .

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 4 / 10



closed symbolic execution for verifying program termination

Partial evaluation

Extension of standard execution for some unkown input data
(symbolic values)

Usually an overapproximation of standard execution

requires subsumption and abstraction for termination

Mainly used for program specialization in declarative (functional,
logic, etc) languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 5 / 10



closed symbolic execution for verifying program termination

Partial evaluation

Extension of standard execution for some unkown input data
(symbolic values)

Usually an overapproximation of standard execution

requires subsumption and abstraction for termination

Mainly used for program specialization in declarative (functional,
logic, etc) languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 5 / 10



closed symbolic execution for verifying program termination

Partial evaluation

Extension of standard execution for some unkown input data
(symbolic values)

Usually an overapproximation of standard execution

requires subsumption and abstraction for termination

Mainly used for program specialization in declarative (functional,
logic, etc) languages

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 5 / 10



closed symbolic execution for verifying program termination

Partial evaluation: example

power x 0 = 1
power x 1 = x
power x n = x ∗ power x (n− 1)'

&

$

%

power x (n + 2)

��
x ∗ power x (n + 1)

{n 7→0}

vvllllllllllll
{n 7→m+1}

��
x ∗ x x ∗ x ∗ power x (m + 1)

hh

⇒

�
�

�
�

power+2 x n = x ∗ power+1 x n
power+1 x 0 = x ∗ x
power+1 x n = x ∗ x ∗ power+1 x (n − 1)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 6 / 10



closed symbolic execution for verifying program termination

Partial evaluation: example

power x 0 = 1
power x 1 = x
power x n = x ∗ power x (n− 1)'

&

$

%

power x (n + 2)

��
x ∗ power x (n + 1)

{n 7→0}

vvllllllllllll
{n 7→m+1}

��
x ∗ x x ∗ x ∗ power x (m + 1)

hh

⇒

�
�

�
�

power+2 x n = x ∗ power+1 x n
power+1 x 0 = x ∗ x
power+1 x n = x ∗ x ∗ power+1 x (n − 1)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 6 / 10



closed symbolic execution for verifying program termination

Partial evaluation: example

power x 0 = 1
power x 1 = x
power x n = x ∗ power x (n− 1)'

&

$

%

power x (n + 2)

��
x ∗ power x (n + 1)

{n 7→0}

vvllllllllllll
{n 7→m+1}

��
x ∗ x x ∗ x ∗ power x (m + 1)

hh

⇒

�
�

�
�

power+2 x n = x ∗ power+1 x n
power+1 x 0 = x ∗ x
power+1 x n = x ∗ x ∗ power+1 x (n − 1)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 6 / 10



closed symbolic execution for verifying program termination

This work

Use symbolic execution to overapproximate standard executions

(as in partial evaluation)

Use the symbolic execution graph for verifying program termination

(or other liveness properties)

In particular,

we produce a term rewriting system that represents the transitions of
the symbolic execution graph (as in partial evaluation)

and apply existing termination provers for term rewriting systems

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 7 / 10



closed symbolic execution for verifying program termination

This work

Use symbolic execution to overapproximate standard executions

(as in partial evaluation)

Use the symbolic execution graph for verifying program termination

(or other liveness properties)

In particular,

we produce a term rewriting system that represents the transitions of
the symbolic execution graph (as in partial evaluation)

and apply existing termination provers for term rewriting systems

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 7 / 10



closed symbolic execution for verifying program termination

This work

Use symbolic execution to overapproximate standard executions

(as in partial evaluation)

Use the symbolic execution graph for verifying program termination

(or other liveness properties)

In particular,

we produce a term rewriting system that represents the transitions of
the symbolic execution graph (as in partial evaluation)

and apply existing termination provers for term rewriting systems

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 7 / 10



closed symbolic execution for verifying program termination

Example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done'

&

$

%

〈l0, {x 7→ ⊥}, true〉

��
〈l1, {x 7→ X}, true〉

ssggggggggg
��

〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

ssggggggggg
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉

kk ⇒

'

&

$

%

f0 = f1 x
f1 x = if (x > 0)

then f3 x
else f4 x

f4 x = f5 (x − 1)
f5 x = if (x > 0)

then f3 x
else f4 x

Terminating! (using AProVE)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 / 10



closed symbolic execution for verifying program termination

Example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done'

&

$

%

〈l0, {x 7→ ⊥}, true〉

��
〈l1, {x 7→ X}, true〉

ssggggggggg
��

〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

ssggggggggg
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉

kk ⇒

'

&

$

%

f0 = f1 x
f1 x = if (x > 0)

then f3 x
else f4 x

f4 x = f5 (x − 1)
f5 x = if (x > 0)

then f3 x
else f4 x

Terminating! (using AProVE)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 / 10



closed symbolic execution for verifying program termination

Example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done'

&

$

%

〈l0, {x 7→ ⊥}, true〉

��
〈l1, {x 7→ X}, true〉

ssggggggggg
��

〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

ssggggggggg
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉

kk ⇒

'

&

$

%

f0 = f1 x
f1 x = if (x > 0)

then f3 x
else f4 x

f4 x = f5 (x − 1)
f5 x = if (x > 0)

then f3 x
else f4 x

Terminating! (using AProVE)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 / 10



closed symbolic execution for verifying program termination

Example

l0 : x := input();
l1 : while x > 0 do
l2 : x := x − 1;
l3 : done'

&

$

%

〈l0, {x 7→ ⊥}, true〉

��
〈l1, {x 7→ X}, true〉

ssggggggggg
��

〈l3, {x 7→ X},¬(X > 0)〉 〈l2, {x 7→ X}, X > 0〉

��
〈l1, {x 7→ X − 1}, X > 0〉

ssggggggggg
��

〈l3, {x 7→ X − 1},¬(X > 1)〉 〈l2, {x 7→ X − 1}, X > 1〉

kk ⇒

'

&

$

%

f0 = f1 x
f1 x = if (x > 0)

then f3 x
else f4 x

f4 x = f5 (x − 1)
f5 x = if (x > 0)

then f3 x
else f4 x

Terminating! (using AProVE)

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 8 / 10



closed symbolic execution for verifying program termination

Proof-of-concept implementation

SETT (Symbolic Execution-based Termination Tool)

simple imperative programs with integers, basic arithmetic,
assignments, conditionals and jumps

web interface: http://kaz.dsic.upv.es/sett/

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 9 / 10

http://kaz.dsic.upv.es/sett/


closed symbolic execution for verifying program termination

Conclusions

Powerful scheme for proving program termination

Same scheme can be used

for other (dynamic) programming languages (Erlang, JavaScript)
for other (liveness) properties

G Vidal (Valencia) Closed Symbolic Execution SCAM 2012 10 / 10


	closed symbolic execution
	for verifying program termination


