Compatibility Prediction of Eclipse Third-party Plug-ins in new Eclipse Releases

John Businge, Alexander Serebrenik, Mark van den Brand

ΤU

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

The Eclipse Framework

Software Engineering and Technology (SET)

26-9-2012 PAGE 1

26-9-2012 PAGE 2

Technische Universiteit

University of Technology

Eindhoven

- P3 ETP-APIs
- P1, P2 and P4 ETP-non-APIs

Technische Universiteit

University of Technology

Motivation

- Previous study (Survival of ETPs ICSM 2012), we tested compatibility of 345 ETP-APIs and 288 ETP-non-APIs with different Eclipse releases.
- Our observations:
 - 1. ETP-APIs always compatible in new Eclipse releases.
 - 2. Bad interfaces are the main cause of incompatibilities.
 - 3. Informally, found old bad interfaces stable.
- Formally verified observation 2.
- Trained prediction models
- Tested the prediction models.

Motivation

- Previous study (Survival of ETPs ICSM 2012), we tested compatibility of 345 ETP-APIs and 288 ETP-non-APIs with different Eclipse releases.
- Our observations:
 - 1. ETP-APIs always compatible in new Eclipse releases.
 - 2. Bad interfaces are the main cause of incompatibilities.
 - 3. Informally, found old bad interfaces stable.
- Formally verified observation 2.
- Trained prediction models
- Tested the prediction models.

26-9-2012

PAGE 5

Compatibility prediction

- Requirements of compatibility prediction:
 - Current SDK compatible with ETP
 - Later SDK to make prediction
- We built 36 prediction models in total
- Models are bases on bad interfaces used by ETPs

26-9-2012

PAGE 7

ETP-non-APIs supported in Eclipse Releases

Eclipse	2.1	3.0	3.1	3.2	3.3	3.4	3.5	3.6	Total
# ETPs	29	48	34	40	38	36	33	30	288

Software Engineering and Technology (SET)

26-9-2012 PAGE 8

Model Training

 Statistics – Binary Logistic Regression

 $P(event) = 1/(1 + e^{-z})$ $z = b_0 + b_1 X_1 + \dots + b_p X_p$ P(event) - Dependent variablep # Independent variables

 $P(X) = 1/(1 + e^{-z})$ $z = b_0 + b_1 * 8 + b_4 * 5$ P(X) < 0.5 - incompatibilityP(X) >= 0.5 - compatibility

 In both model training and testing: High Precision, Accuracy, and Recall, where some were 80% and more

	Model Testing Error Analysis										
	3.5			3.6			3.7				
	А	Р	R	А	Р	R	А	Р	R		
3.4	94	100	94	93	100	93	93	100	93		
3.5				91	94	96	88	91	96		

Conclusion and Future Work

- Mining interface usage from ETPs to detect or predict compatibility shows good results.
- Next, develop a domain specific tool to make predictions.
- Who can use the tool? users and developers of ETPs

Thank you for listening

Software Engineering and Technology (SET)

26-9-2012 PAGE 23