$P(x) = \frac{1}{1 + e^{-z}}$

$z = b_0 + b_1x_1 + \cdots + b_px_p$

* I do not understand these constructs and similar ones like these ones; but I use them.

Do we share a similar feeling???
DO PLOTS
(FOR INDUSTRY PEOPLE)

DO STATS, DISCUSS THROBBERS
(FOR NASTY REVIEWERS)

THEN

DIG INTO YOUR DATA,
SOURCE CODE, EMAILS, LOGS

... OTHERWISE YOU COULD
PUBLISH MANY IROP
PAPERS

😊
Industry is starting to believe some of our results. Now this is a time to be very very careful, because our models will be used to judge & predict.

* Just because you can fit a plot with a power function, does not mean you have a "scale-free" exponential model. You can fit it with anything... [Clauset et al.]

* Just because least squares produces a great linear fit with high certainty, does not mean you have a linear relationship.

* **ALWAYS SHOW THE PLOTS**
In defense of McCabe

Facts about \(vCP \)

McCabe did not define \(v \) (switch)

McCabe does not claim prediction

Only use \(vCP) < 10 \)

JC

MCC

1976 Farkas
Structural dependencies are

Analyses of program structure is not useful for capturing dependencies between UML tools results of domain and conceptual mapping.