
Collections Frameworks for Points-to Analysis

Tobias Gutzmann, Jonas Lundberg, and Welf Löwe

(tobias.gutzmann|jonas.lundberg|welf.lowe)@lnu.se

September 23, 2012

The Software Technology Group

Collections Frameworks for Points-to Analysis 1(12)

Introduction & Motivation

I Points-to analysis (P2A): Static program analysis computing
reference information

I What objects are possibly referenced by a field?
I Used, e.g., for call graph construction, statically resolving

polymorphic calls, down-cast safety

I Collections frameworks: Part of almost each standard library of
programming languages

I Points-to analysis has a hard time analyzing collections frameworks
I Lots of features for programmers, but P2A only needs to know:

What goes into a collection object, also can get out of it

I → special handling of collections classes for improving both
performance and precision

The Software Technology Group

Collections Frameworks for Points-to Analysis 2(12)

Special handling of collection classes in
Points-to analysis

I Points-to information of collection classes often not of interest

I Basic idea (Liang et al., PASTE’01): replace calls to methods of
collection classes with field accesses:

I c.add(o) → c.elem = o
I o = c.get() → o = c.elem

I Drawbacks:
I Not sound: callbacks not taken into consideration
I Must be implemented for each P2A implementation separately

The Software Technology Group

Collections Frameworks for Points-to Analysis 3(12)

Special handling of collection classes in
Points-to analysis

I Points-to information of collection classes often not of interest

I Basic idea (Liang et al., PASTE’01): replace calls to methods of
collection classes with field accesses:

I c.add(o) → c.elem = o
I o = c.get() → o = c.elem

I Drawbacks:
I Not sound: callbacks not taken into consideration
I Must be implemented for each P2A implementation separately

The Software Technology Group

Collections Frameworks for Points-to Analysis 3(12)

Our approach

I Basic observation: No strong updates in P2A, so use base type fields
instead of arrays

I Possible as backing data-structures in collection classes are well
encapsulated

I Iterators etc. just expose the elements of the collection objects, just
through a different API

I Note: Some preconditions must be fulfilled, please cf. paper

The Software Technology Group

Collections Frameworks for Points-to Analysis 4(12)

Replacement classes by example

class ArrayList extends AbstractList {
implements Iterator {

private Object elems; // non-array field
Object get(int i) { return elems; }
void add(Object o) { elems = o; }
// ...
Iterator iterator() { return this; }

boolean hasNext() { return true; }
Object next() { return elems; }

}

The Software Technology Group

Collections Frameworks for Points-to Analysis 5(12)

Replacement classes by example

class ArrayList extends AbstractList {
implements Iterator {

private Object elems; // non-array field
Object get(int i) { return elems; }
void add(Object o) { elems = o; }
// ...
Iterator iterator() { return this; }

boolean hasNext() { return true; }
Object next() { return elems; }

}

The Software Technology Group

Collections Frameworks for Points-to Analysis 5(12)

Reference modeling in P2A

ArrayList
Object[]
elems

ArrayList’s
Iterator

ArrayList
& its

Iterator

Original ArrayList implementation:

Replacement ArrayList implementation:

Set of possibly
referenced

objects

Set of possibly
referenced

objects

The Software Technology Group

Collections Frameworks for Points-to Analysis 6(12)

Changed method signatures

I Some classes now implement conflicting interfaces. Needed to
change return types of some methods.

class and method return type change reason
Collection.remove(Object) boolean → Object Map.remove(Object)
Iterator.remove() void → Object Queue.remove()
ListIterator.add(Object) void → boolean Collection.add(Object)

→ programs must be transformed prior to being analyzed

The Software Technology Group

Collections Frameworks for Points-to Analysis 7(12)

Engineering Process

program program’
bytecode

transformer

Any P2A P2A results’ remap method
signatures

P2A results

replacement
classes

I P2A implementation never knows, no adaptation required

The Software Technology Group

Collections Frameworks for Points-to Analysis 8(12)

Evaluation

Setup1

I Experiments with P2SSA (our own P2A) with two different settings,
as well as Spark and Paddle (Soot framework).

I 9 benchmark programs. Note: Two of them make (almost) no use
of collection classes in application code.

I Metrics:
I Call graph
I Object call graph: a more fine-grained version of call graph
I Heap: Size of abstract heap

I Validated by comparing with results from dynamic analysis

I Spark: no improvements, not further discussed.

1All experiments performed on a Standard Desktop PC, Intel Core 2 Quad Q9550,
2.83Ghz, 4GB RAM, 32-bit Windows XP, JDK 1.6.0 22, with JVM arguments
-Xmx1200M -Xss30M. All results are average of three runs.

The Software Technology Group

Collections Frameworks for Points-to Analysis 9(12)

Evaluation II
Performance

I Transformation of classes took 1.1 seconds on average

I Paddle ∼24%, P2SSA1 ∼9%, P2SSA2 ∼17% faster on average

Precision

I P2SSA1 hardly any improvements, not reflected below

I Call graph: on average improved by ∼1% (nodes) resp. ∼2%
(edges) (Paddle, P2SSA2)

I Object call graph: on average improved by ∼1.5% (nodes) resp.
∼4% (edges) (P2SSA2)

I Heap: on average improved by ∼7% (P2SSA2)

Conclusion

I Improved precision while at the same time reduced costs

The Software Technology Group

Collections Frameworks for Points-to Analysis 10(12)

Other aspects

I Even better results with inlining of collection classes methods (but
that’s specific to each P2A implementation); cf paper

I Works with application-specific collection classes, as they are not
replaced

I Preliminary home:
http://homepage.lnu.se/staff/tgumsi/collections/

I Applicable to other static analyses !?

The Software Technology Group

Collections Frameworks for Points-to Analysis 11(12)

http://homepage.lnu.se/staff/tgumsi/collections/

The End

Thank you very much for your attention!

The Software Technology Group

Collections Frameworks for Points-to Analysis 12(12)

